Binary Systems of Tetrachloroethylene with Benzene, Toluene, p-Xylene, Carbon Tetrachlorlde, and Cyclohexane. 2. Viscosities at 303.15 K

Jagan Nath* and B. Narain
Chemistry Department, Gorakhpur Unlversity, Gorakhpur 273001, Indla

Abstract

Measurements of viscosities accurate to $\mathbf{\pm 0 . 0 1} \mathbf{~ m P}$ have been made for binary liquid mbxtures of tetrachloroethylene $\left(\mathrm{C}_{2} \mathrm{Cl}_{4}\right)$ with benzene, toluene, p-xylene, carbon tetrachloride, and cyclohexane at $303.15 \pm 0.01 \mathrm{~K}$. The values of viscositles, η, of the varlous mixtures have been found to the the equation $\eta=$ $x_{1} \eta_{1}+x_{2} \eta_{2}+x_{1} x_{2}\left[A+B\left(x_{1}-x_{2}\right)+C\left(x_{1}-x_{2}\right)^{2}\right]$, where η_{1} and η_{2} are the viscostiles of the two pure liquids 1 and 2 , respectively, x_{1} is the mole fraction of $\mathrm{C}_{2} \mathrm{Cl}_{4}, x_{2}$ is the mole fraction of the aromatic hydrocarbon, CCl_{4} or cyclohexane, and A, B, and C are constants characteristic of a system. The values of the quantity η^{Ex} which correspond to $\eta^{\mathrm{Ex}}=x_{1} x_{2}\left[A+B\left(x_{1}-x_{2}\right)+C\left(x_{1}\right.\right.$ $\left.\left.-x_{2}\right)^{2}\right]$ have been found to be negative for all the systems. For mbxtures of $\mathrm{C}_{2} \mathrm{Cl}_{4}$ whth aromatics at any fixed mole fraction, η^{Ex} has the following sequence: p-xylene > toluene > benzene.

Introduction

Recently the measurements of ultrasonic velocities and adiabatic compressibilities at 293.15 and 303.15 K , dielectric constants at 298.15 and 308.15 K , and refractlve indexes at 298.15 K have been reported (1) for binary liquid mixtures of tetrachioroethylene $\left(\mathrm{C}_{2} \mathrm{Cl}_{4}\right)$ with benzene, toluene, p-xylene, carbon tetrachloride, and cyclohexane. In the present program, the measurements of viscosities for these mixtures have been made at 303.15 K , and the results obtained are reported in this paper. These measurements of viscosities have been undertaken to determine whether the viscosity data throw light on the existence of specific interaction between the components of the various mixtures.

Experimental Section

Materiats. The methods of purifying the various components and checking their purity have been described earlier (1).

Method. The viscosities of the various pure liquids and binary mixtures were measured at $303.15 \pm 0.01 \mathrm{~K}$, by using a kinematic viscometer described by Tuan and Fuoss (2) and by following the procedure described by Nath and Dubey (3). The measured values of the kinematic viscosities were converted to dynamic viscosities, η, by using the densities which for pure liquids were those reported earlier (1). The densities of mixtures were obtained from the densities of pure components and the earlier measurements on excess volumes (4) for their binary mixtures. The values of η thus obtained are accurate to $\pm 0.01 \mathrm{mP}$.

Results and Discussion

The experimental values of dynamic viscosities for the various liquids and binary mixtures of $\mathrm{C}_{2} \mathrm{Cl}_{4}$ at 303.15 K are glven in Table I, where x_{1} refers to the mole fraction of $\mathrm{C}_{2} \mathrm{Cl}_{4}$. The values of viscosities for benzene, toluene, p-xylene, cyclohexane, and $\mathrm{C}_{2} \mathrm{Cl}_{4}$ at 303.15 K have been found to be 5.65 , $5.22,5.66,8.20$, and 7.98 mP , respectlvely, which are in good

Table I. Experimental Values of Viscosities, η, for the Various Liquid Mixtures at 303.15 K

x_{1}	η, mP	x_{1}	η, mP
$\mathrm{C}_{2} \mathrm{Cl}_{4}$-Benzene			
0.0000	5.65	0.5756	6.48
0.1913	5.77	0.6664	6.75
0.2749	5.84	0.7757	7.12
0.3761	6.05	0.8828	7.46
0.4668	6.24	1.0000	7.98
$0.0 \mathrm{C}_{2} \mathrm{Cl}_{4}-\mathrm{CCl}_{4}$			
0.0000	8.45	0.7629	8.00
0.3238	8.18	0.8308	7.98
0.4020	8.14	0.9128	7.97
0.5600	8.08	1.0000	7.98
0.6543	8.01		
$\mathrm{C}_{2} \mathrm{Cl}_{4}$-Toluene			
0.0000	5.22	0.6834	6.88
0.2552	5.74	0.7448	7.06
0.3392	5.97	0.8395	7.38
0.4608	6.21	1.0000	7.98
0.5759	6.52		
$\mathrm{C}_{2} \mathrm{Cl}_{4}$-Cyclohexane			
0.0000	8.20	0.6612	7.58
0.2317	7.77	0.7644	7.71
0.4306	7.50	0.8345	7.75
0.5117	7.51	1.0000	7.98
0.5969	7.51		
$0 \mathrm{C}_{2} \mathrm{Cl}_{4}-p$-Xylene			
0.0000	5.66	0.6982	7.19
0.1060	5.86	0.7773	7.38
0.1121	5.88	0.8517	7.57
0.2120	6.07	1.0000	7.98
0.6339	7.04		

Table II. Values of the Least-Squares Constants A, B, and C of Eq 1 and the Standard Deviations $\sigma(\eta)$ at 303.15 K

system	A, mP	B, mP	C, mP	$\sigma(\eta)$, mP
$\mathrm{C}_{2} \mathrm{Cl}_{4}$-benzene	-2.005	0.040	-0.539	0.02
$\mathrm{C}_{2} \mathrm{Cl}_{4}$-toluene	-1.081	-0.273	0.223	0.02
$\mathrm{C}_{2} \mathrm{Cl}_{4}-p$-xylene	-0.374	-0.051	-0.245	0.007
$\mathrm{C}_{2} \mathrm{Cl}_{4}-\mathrm{CCl}_{4}$	-0.490	0.046	-0.251	0.01
$\mathrm{C}_{2} \mathrm{Cl}_{4}$-cyclohexane	-2.346	0.206	0.938	0.03

agreement with the corresponding literature (5) values 5.66 , $5.23,5.68,8.20$, and 7.98 mP , respectively, for the five liquids in the same order.

The values of the viscosities, η, of the various mixtures of $\mathrm{C}_{2} \mathrm{Cl}_{4}$ have been found to fit the equation

$$
\begin{equation*}
\eta=x_{1} \eta_{1}+x_{2} \eta_{2}+x_{1} x_{2}\left[A+B\left(x_{1}-x_{2}\right)+C\left(x_{1}-x_{2}\right)^{2}\right] \tag{1}
\end{equation*}
$$

where η_{1} and η_{2} are the viscosities of the two pure liquids 1 and $2, x_{1}$ is the mole fraction of $\mathrm{C}_{2} \mathrm{Cl}_{4}, x_{2}$ is the mole fraction of the aromatic hydrocarbon, CCl_{4} or cyclohexane, and A, B, and C are constants characteristic of a system. The values of the least-squares constants A, B, and C along with the standard deviations $\sigma(\eta)$ are given in Table II. The values of the quantity
η^{Ex}, which refers to the deviations from a rectilinear dependence of viscosity of the mixture on mole fraction, can be discussed in the light of intermolecular interactions (6). The values of η^{Ex} which correspond to $\eta^{\mathrm{Ex}}=x_{1} x_{2}\left[A+B\left(x_{1}-x_{2}\right)+C\left(x_{1}-\right.\right.$ $\left.\left.x_{2}\right)^{2}\right]$, in the present case, have been found to be negative for all the systems (see Table II) of $\mathrm{C}_{2} \mathrm{Cl}_{4}$. For mixtures of $\mathrm{C}_{2} \mathrm{Cl}_{4}$ with aromatic hydrocarbons at any fixed mole fraction, η^{Ex} has the following sequence:

$$
p \text {-xylene }>\text { toluene }>\text { benzene }
$$

This béhavior of the values of η^{Ex} gives evidence of the In creasing extent of interaction of $\mathrm{C}_{2} \mathrm{Cl}_{4}$ with the aromatic hydrocarbons having increasing numbers of CH_{3} groups substtuted in the aromatic ring. The values of η^{Ex} which have been found to be highly negative for $\mathrm{C}_{2} \mathrm{Cl}_{4}$-cyclohexane can be attributed to the fact that only the dispersion forces are present between the components of this system. The values of η^{Ex} for $\mathrm{C}_{2} \mathrm{Cl}_{4}-\mathrm{CCl}_{4}$ are, however, much less negative. This, along with the trend in the values of η^{Ex} for the systems of $\mathrm{C}_{2} \mathrm{Cl}_{4}$ with benzene, toluene, and p-xylene, indicates the existence of specific interaction of $\mathrm{C}_{2} \mathrm{Cl}_{4}$ with CCl_{4} and aromatics.

Acknowledgment

We are extremely grateful to Prof. R. P. Rastogl, Head of the Chemistry Department, Gorakhpur University, for encouragement.

Regletry No. Tetrachioroethylene, 127-18-4; benzene, 71-43-2; toluene, 108-88-3; p-xylene, 106-42-3; carbon tetrachloride, 56-23-5; cyclohexane, 110-82-7.

LHerature CHed

(1) Nath, J.; Narain, B. J. Chem. Eng. Data 1882, 27, 308-12.
(2) Tuan, D. F. T.; Fuoss, R. M. J. Phys. Chem. 1963, 67, 1343-7.
(3) Nath, J.; Dubey, S. N. J. Phys . Chem. 1981, 85, 886-9.
(4) Rastogi, R. P.; Nath, J.; Singh, B. J. Chem. Thermodyn. 1977, 9, 831-4.
(5) Timmermans, J. "Physico-Chemical Constants of Pure Organic Compounds"; Elsevier: Amsterdam, 1950.
(6) Fort, R. J.; Moore, W. R. Trans. Faraday Soc. 1966, 62, 1112-9.

Recelved for review January 26, 1982. Revised manuscript recelved February 24, 1983. Accepted April 9, 1983. Thanks are due to the Councll of Scientific and Industrial Research, New Delhi, for financial support.

Substituent Effects on the Dissociation Constants and the Strength of the Hydrogen Bond in Some Azo Cresol Compounds

Mamdouh S. Masoud,* Samir A. Abou All, Gamila Y. All, and Mohamed A. El-Dessouky
Chemistry Department, Faculty of Sclence and Education, Alexandria, Egypt

Abstract

The dissociation constants of some substituted azo cresol compounds were evaluated potentiometrically and the data were explained in terms of the electronic character of the substituents. Electron-donor substituents possess higher pK values than the attracting groups. These values are increased by Increasing the mole fraction of the dloxane solvent. The thermodynamic parameters (ΔH, ΔF, and ΔS) were evaluated and explained In terms of the strength of the intramolecular hydrogen bond. The cosolvent property was dlscussed and related to the molecular structure of the molecule. The phenomenon of tautomerism was visualized on the basis of infrared spectral measurements.

The azo compounds occupy an important position especially from an analytical point of view (1-5). In this laboratory, the structural chemistry of some azo compounds and their complexes has been determined (6-13). In a continuation, of these studles, we aim to focus attention on the strength of the intramolecular hydrogen bond in some substituted azo cresol compounds. The $\mathrm{p} K, \Delta H, \Delta F$, and ΔS values are evaluated and the role of dloxane solvent on the behavior of these compounds is explained.

Experimental Section

The azo compounds were prepared as published elsewhere (14). Stock $10^{-2} \mathrm{M}$ solutions of each compound were prepared by dissolving the required weight in dioxane. The exact concentration was determined potentiometrically.

$\mathrm{R}=\mathrm{H}, p-\mathrm{NO}_{2}, p-\mathrm{NO}_{2}, p-\mathrm{CH}_{3}, p-\mathrm{OCH}_{3}$, 2,4-dichloro, $0-\mathrm{OCH}_{3}$
Stock $5 \times 10^{-2} \mathrm{M} \mathrm{KOH}$ was prepared in different proportions of dloxane-water medla. The dioxane solvent was purified as reported (14).
All the titration experiments were done in the following way: 50 mL of $5 \times 10^{-3}-3 \times 10^{-3} \mathrm{M}$ of the compound containing 0.1 $\mathrm{M} \mathrm{KNO}_{3}$ as a supporting electrolyte thermostated in a cell at different temperatures ($25-40 \pm 0.5^{\circ} \mathrm{C}$) was titrated against the standard KOH solution in the presence of the desired concentration of dioxane. A stream of purified nitrogen gas was passed through the solution to eliminate CO_{2} dissolved in the medium throughout the course of the titrations. A Beckman type 4500 pH meter was used for measurements and callbrated by using two buffer solutions at pH 4.01 and 9.18 .

The infrared spectral measurements of a pressed KBr sample were recorded on a Unicam SP 1025.

The dissociation constant of the compound could be estimated from the titration curves where only one inflection point is apparent, indicating that only one proton is ttrated. The dissoclation of the ligand could be expressed as

$$
\begin{equation*}
\mathrm{HL} \rightleftharpoons \mathrm{H}^{+}+\mathrm{L}^{-} \tag{1}
\end{equation*}
$$

and the dissociation constant is given by the equation

$$
\begin{equation*}
K=\left[\mathrm{H}^{+}\right]\left[\mathrm{L}^{-}\right] /[\mathrm{HL}] \tag{2}
\end{equation*}
$$

